
Design Patterns
Object-Oriented Space Invaders in C# by Brian Keschinger

Table of Contents
Table of Contents...Page 1
Singleton..Pages 2-3
Manager...Pages 4-5
Factory..Pages 6-7
Flyweight (Proxy)..Pages 8-9
Composite...Pages 10-11
Null Object..Pages 12-13
State...Pages 14-15
Strategy...Pages 16-17
Visitor...Pages 18-19
Observer..Pages 20-21
Command..Pages 22-23
Priority Queue..Pages 24-25
Iterator..Pages 26-27
YouTube Video..........................https://youtu.be/2eQQ1xjN8ao

(Copy and Paste)

Singleton

A Singleton class makes sure that there is only ever one instance of that class created.
That instance is then able to be accessed globally through static methods. All of the
managers in Space Invaders are Singletons to be able to manage their particular list
of respective nodes.

In the above example, Texture_Manager is a Singleton, so there is only ever one Tex-
ture_Manager, which is stored in the instance variable. Our constructori s private so
it can never be called outside of the class.

To first use the Texture_Manager you’re forced to call the Create() method.

Notice that the Create() method is static so it can be called globally. If the Create() method is
called more than once, it will simply do nothing because the instance has already been created.

Now whenever we want to use the Texture_Manager’s instance, we use the privInstance() method.

The privInstance() method will be used throughout the Texture_Manager to ensure we’re only
ever using that one instance of Texture_Manager.

For example, if we wanted to add a Texture to the Texture_Manager, we would call Texture_
Manager.Add() with the proper parameters.

Manager

The Manager pattern is a way to manage nodes. With the Manager pattern you can
do anything you want wiith the nodes globally (add, remove, update, etc.) as the
Manager owns the nodes that are stored in a ManLink (double-linked list).

We saw before that the Manager is a singleton and you may have noticed that the
instance is created using the numReserve and reserveGrow ints that are passed into
the Manager’s Create() function.

These ints are used to create two double-linked lists of nodes inside the Manager -- active and
reserve. NumReserve is the number of nodes created and added to the reserve list initially. Then
whenever you Add() to the Manager, it pulls a node from the reserve list and pushes it to the
active list. If the reserve list gets emptied, then it is replenished with a reserveGrow amount of
nodes. Whenever you Remove() from the Manager the node is pulled from the active list and
put back onto the reserve list in order to recycle the nodes.

The Manager pattern does this to reduce the number of dynamic allocations during run time. If
you set you numReserve high enough, you will buy all the memory you need up front and just
continue to recycle those nodes.

Factory

Alien_Factory creates an alien based on a passed in type, adds that alien to a
PCS_Tree, and puts the alien on a SpriteBatch to be drawn. We defer the creation
of the specific type of alien to the Create() method of the factory by passing it a
type. By putting this Factory in a for loop, we create the entirety of our alien grid
with hierarchy.

The Create() method of the factory uses a Switch/Case statement to decide what kind of alien to
create and then does all of the necesaary actions to get that object set up, drawing, and updating
in the PCS_Tree.

Flyweight and Proxy

What is the difference between the first Squid in
the row and the 11th Squid? The only difference
between the two objects is its position (x,y). So
when you use a factory to create 11 Squids, we
don’t need to use 11 full GameSprites. Instead we
create 11 FlyweightSprites.

The FlyweightSprite is just a light version of the GameSprite that takes advantage of the objects
only uniqueness: posiition. The FlyweightSprite, by contract of inheriting from SpriteBase, has
its own Update() and Draw() that simply push data to and call the GameSprite. This way when
the SpriteBase’s Draw() and Update() are called, it handles the FlyweightSprite and the Game-
Sprite the same way, except that that FlyweightSprite calls some GameSprite functions.

The FlyweightSprite holds a reference to a GameSprite. This is the Proxy that allows the Fly-
weightSprite to call the full GameSprite’s functions -- which has the remaining data needed to be
drawn on screen. The FlyweightSprite pattern has a many-to-one relationship with the concrete
GameSprite and allows for the reuse of common data.

Composite

The Composite pattern is essential in Space Invaders. The way we update all of the
aliens positions and collision boxes requires hierarchy, which is why we use the
PCS_Tree as the Composite pattern. The PCS_Tree stands for Parent-Child-Sibling
Tree, which is otherwise known as a LCRS Tree (Left Child, Right Sibling).

The PCS_Tree is structured like this: Each Parent can have one Child, each Child can have one
Parent and one Sibling. When we want all objects of a single hierarchy we simply traverse the
siblings.

This works really well for us as the Grid and Column collision boxes are dynamically calculated
based on their Children. Each Column calculates all of its Children (the aliens) and creates a
vertical bounding volume containing all of the aliens. The Grid then calculates all of its Children
(the columns) and creats a bounding volume containing all of the columns (which contain the
aliens).

The Grid’s bounding volume is red.
The Column’s bounding volumn is yellow.
And the Alien’s bounding volume is green.

Null Object

Sometimes we want a GameSprite, but we don’t want it to have a CollisionSprite.
And sometimes we want the opposite: a CollisionSprite, but not a GameSprite. We
want all objects to be treated the same and not have to have special cases when
drawing.

For example; Our Grid has a CollisionSprite that has the volume of all of the Columns and
Aliens, but this Grid doesn’t have a GameSprite. So we create a Null_GameSprite that inherits
from GameSprite whose Draw() simply does nothing because we don’t want it to draw a Game-
Sprite. Now the Grid is treated just like every other object and calls Draw() when it’s required to
do so, but it’s Draw() simply does nothing when trying to draw a NullSprite.

This same pattern can be used when we don’t want to draw a collision box by simply using the
Null_CollisionSprite.

To attach the NullSprite, we call Find() on the GameSprite_Manager with
GameSprite.Name.NullObject as the passed in name.

State

Our Ship can only fire one missile at a time. When the Ship gets hit by a bomb or an
alien, it can’t move. When a missile hasn’t been fired, the ship can move and shoot.

These are all special case scenarios that we wan’t to avoid and we do that by using the
State pattern.

The Ship holds a reference to the current state and always performs its actions on
that state. We swap the currState depending on a specific event within the game. All
states implement the Move_Left(), Move_Right(), and Shoot() methods by contract
of inheritance.

We store all of the states on the Ship itself because there are only four of them. If
there were more, we’d want to implement some kind of data structure to access
these.

When the Ship is created we set the currState to the readyState. The readyState is of class Ship_
Ready whose Move_Left() and Move_Right() methods move left and right respectively, but the
Shoot() method will fire a missile and swap the Ship’s currState to firedState.

Now that the missile has been fired, we don’t want the Ship to be able to shoot again until that
missile has hit something (an alien, shield, wall, etc.). Since we swapped the currState from
readyState to firedState, the Ship won’t be able to fire another missile until the currState is
swapped back to the readyState becase firedState’s Shoot() function does nothing.

The currState will get swapped back to readyState when the missile collides with something (an
alien, shield, wall, etc.) by that Collision Observer, which we’ll talk about soon.

When you press the spacebar we always call the currState.Shoot() method, but depending on the
state that the Ship is in at that particular moment in the game, it may shoot or it may not. It’s the
same thing for Move_Left() and Move_Right().

Strategy

You may have noticed that our State pattern is used very closely with the Strategy
pattern because the states are built using the Strategy pattern.

By contract of inheritance, each Strategy must implement the Move_Left(), Move_
Right(), and Shoot() functions as they are abstract methods in the base class Ship_
Strategy.

The Strategy pattern allows for each Strategy’s overloaded methods to be of different shapes and
sizes to perform different actions based on what is appropriate for that Strategy.

When the Ship is hit by a bomb, it enters a death animation. During that time we don’t want the
user to be able to move the Ship around the screen. That would look weird if the Ship is ex-
ploding and you’re able to change its position. So the Move_Left() function of Ship_Death does
nothing. Though if the Ship isn’t dying, then the Move_Left subtracts a distance from the Ship’s x
position in the game space.

Visitor
The Visitor pattern declares a virtual
visit method for each type of colli-
dable object available.

If objectA is able to be collided with
objectB, objectA will implement and
override the VisitObjectB method in
its class.

All classes that inherit from Colli-
sion_Visitor must implement the
abstract Accept() method to call the
appropriate object’s Visit...() method.

Upon collision of Missile_Root and Alien_Grid, Missile_Root’s Accept() method will be called
with Alien_Grid being passed in as the Collision_Visitor visitor.

We then call the VisitMissileRoot() function on the Alien_Grid, while passing in the Missile_
Root. The VisitMissileRoot() function inside of Alien_Grid will then check for a collision with
Alien_Grid’s child (Alien_Column).

If the Alien_Column and the Missile_Root collide then the VisitMissileRoot() function in
Alien_Column will be called. It then does collision checks all the way down the hierarchy until
we have a Missile colliding with an Alien_Squid. Alien_Squid’s VisitMissile() function will then
be called, which calls Notify() on the active collision pair’s Subject, which ultimately fires off all
of the attached Observers (it’s coming, I swear) that perform actions when a tangible collision
occurs.

Observer

Each CollisionPair that is set up has a Subject. The Subject holds a list of Observ-
ers and Subject.Notify() will call every attached Observer’s Notify() and Execute().
These Observer’s Execute() function is where we actually perform actions based on
the collision (add score, trigger death animation, remove an alien, etc.)

When we create a CollisionPair, we attach two trees that we check against each other. In our
previous example, which I’ll continue with, those trees were the Missile tree and the Alien (Grid)
tree. We use the Visitor pattern to check the collisions all the way down in hierarchy to a specific
Alien (Alien_Squid) colliding with the Missile. Inside of AlienSquid’s VisitMissile() the active
CollisionPair’s Subject’s Notify() method is called and that calls all of the attached Observer’s
Notify() and Execute().

There are many different Observers that do different things. We only attach the Observers that
are relevant to that particular collision pair. For example, we don’t want to add score when a Mis-
sile hits a Shield, but we will want to remove the Shield’s brick that was hit and reset the Missile
so we’ll attach the ShieldRemove_Observer and the Missile_Observer. Now when that collision
happens those Observers will Execute().

Command

Throughout Space Invaders we have some events that are based on a particular time
rather than an action: TimeEvents. TimeEvents are put into Priority Queue, but
more on that in a bit. Each TimeEvent has a particular Command whose Execute()
method is fired off when the time has come. All classes inherit from Command and
must implement the Execute() method, but have no constraints outside of that.
Each class can be a different size and contain different amounts of data.

Starting out moving every second and reduced by a small amount every time an Alien is killed,
we animate the Alien_Grid and all of its children based on the Execute() of the Animation_Mo-
veGrid.

Animation_MoveGrid.Execute() traverses the grid tree a adds a set distance to each Alien’s posi-
tion. We then add the event back to the Timer_Manager so this event can happen again based on
the amount of Aliens_Remaining.

A Command is essentially an instruction for an object(s) in a very self-explanatory kind of way.
Animation_MoveGrid moves the Grid of Aliens, Bomb_Drop sends a Bomb from an Alien, Sen-
dUFO sends the UFO flying across the screen, etc.

Priority Queue

Time_Events that execute Commands are stored in the Timer_Manager’s active
list, which is a Sorted Priority Queue. Based on the current time in the game, if the
Time_Event’s triggerTime has passed then the Time_Event is fired off. Once we hit
a Time_Event whose triggerTime has not passed, we exit the list traversal as an ear-
ly-out.

When you add a Time_Event into the Timer_Manager, Timer_Manager.Add() calls baseSorte-
dAddNode() on that Time_Event to put it into the active list. This method makes sure that all
the Time_Events are sorted by their deltaTime with the smallest deltaTime first.

When we walk the Priority Queue of Time_Events, we add the Time_Event’s deltaTime to the
game’s current time and store it in the Time_Event’s triggerTime. If the game’s current time is
greater than the Time_Event’s triggerTime, then the event is fired off.

Iterator

An Iterator is a way to access all elements of a data structure regardless of its hierar-
chy or orientation without exposing its representation.

We have two iterators in Space Invaders, PCS_Iterator and PCS_Reverse_Iterator. Both of these
traverse the PCS_Tree, accessing every node until isDone().

Using the PCS_Iterator on the Alien_Grid tree you will access every node by calling Next() start-
ing with the root of the tree and continuing to the very last child.

The PCS_Reverse_Iterator will do the exact same thing, but it will access the nodes starting with
the very last child and finishing with the root of the tree.

